授業の目的
工学のさまざまな分野で現象を表現, 解析する手段として微分積分学と線形代数学の知識は欠かせない.
ここでは, 2変数関数を主とした微分法, 積分法と線形現象を表現するために必要な行列の基礎知識を身につける.
達成目標
- 2変数関数を理解し, 偏導関数, 高次偏導関数, 合成関数の導関数を求めることができる.【15%】
- 1変数関数及び2変数関数の展開公式を理解し, 近似計算に応用できる.【15%】
- 1変数関数及び2変数関数の極値を理解し, 求めることができる.【10%】
- 2重積分を理解し, 累次積分によって求めることができる. また, その知識を体積の計算に応用できる.【15%】
- 行列とその基本演算を理解し, 計算できる. 逆行列, 連立1次方程式, 基本行列の関係を理解できる.【15%】
- 行列式とその性質について理解し, 2次と3次の行列式をその性質を用いて求めることができる.【15%】
- 行列の固有値とその固有ベクトルについて理解し, 求めることができる. また, その知識を行列の対角化に応用できる.【15%】
以上の目標を学生が達成できるように, 講義を中心とした授業行う.
修得する知識・技能
- 専門的知識・技能 ◎
- 実践的技術力 ー
- 豊かな人間性と社会性 ー
授業の内容 ※詳細は授業チーム (Microsoft Teams) を参照してください. 板書のメモ・ノートがダウンロードできます.
第1回 |
ガイダンス(授業の諸注意)
偏微分(1) 2変数関数のグラフ 2.3[1] 134, 135, 136 , 偏微分 2.4[1] 137, 138, 139
【授業前】導関数の定義と記号 $\dfrac{dy}{dx}$ の意味についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】2変数関数とその偏微分係数, 偏導関数について確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること. |
第2回 |
偏微分(2) 高次偏導関数 2.4[2] 140, 141 , 合成関数とその微分 2.4[3] 〜p.60 146, 147
【授業前】1変数関数の高次導関数と合成関数の微分公式についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】高次偏導関数と合成関数の微分公式について確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
【第1回小テスト】
|
第3回 |
関数の展開(1) 1変数関数の展開, 近似値の計算 2.5[1] 142〜145
【授業前】1変数関数のグラフの接線の求め方と接線の幾何学的な意味についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】1変数関数のテイラー展開とそれを用いた近似計算について確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること. |
第4回 |
関数の展開(2) 2変数関数のテイラー展開 2.5[2] 148
【授業前】1変数関数の展開公式, および合成関数 $f(a+ht, b+kt)$ の導関数の公式についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】2変数関数のテイラー展開とそれを用いた近似計算について確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
【第2回小テスト】
|
第5回 |
関数の極値(1) 1変数関数の極値 2.6[1] 150〜152 br>
【授業前】関数の増減と導関数の符号についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】1変数関数の極値とその判定法を確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
|
第6回 |
関数の極値(2) 2変数関数の極値 2.6[2] 153〜155
【授業前】1変数関数の極値の求め方と判定法についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】2変数関数の極値とその判定法を確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
【第3回小テスト】
|
第7回 |
積分(1) 不定積分 2.7 , 区分求積法・微分積分学の基本定理 2.8[1][2] , 累次積分の計算 2.9[1][2] 156〜158, 161
【授業前】1変数関数の不定積分, 定積分の定義と計算方法についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】2重積分と累次積分との関係を確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること. |
第8回 |
積分(2) 2重積分と体積 2.9[1][2] 162
【授業前】関数のグラフで囲まれる図形の面積や回転体の体積が定積分によって計算できること(「基礎数学II」第13回, 第14回)についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】2重積分を用いて体積が計算できることを確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
【第4回小テスト】
|
第9回 |
行列(1) 行列の基本事項, 線形演算と積 3.1[1] 163〜168, 170, 171
【授業前】ベクトルの線形演算(和, スカラー倍)と内積についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】行列とその和, スカラー倍, 積について確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
|
第10回 |
行列(2) 逆行列 3.1[2] , 基本行列と基本変形 演習問題 3.1 4, 5 169, 172〜176
【授業前】連立1次方程式の解法(消去法)についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】連立1次方程式, 逆行列, 基本行列の関係性を確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
【第5回小テスト】 |
第11回 |
行列式(1) 2次と3次の行列式 3.3[2] 例4. 3.3[3] 177〜181
【授業前】2次正方行列の逆行列の公式と逆行列の存在条件についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】行列式の性質を利用した演算の手法を確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること. |
第12回 |
行列式(2) 行列式の性質 3.3[3] 182
【授業前】行列の基本変形と転置行列についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】行列式の性質を利用した演算の手法を確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
【第6回小テスト】 |
第13回 |
固有値と固有ベクトル(1) 定義と求め方 3.6[1] 183〜185
【授業前】行列の演算規則(分配法則), および逆行列の存在条件についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】固有値, 固有ベクトルの求め方を確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること. |
第14回 |
固有値と固有ベクトル(2) 行列の対角化 3.6[2] 186
【授業前】固有値, 固有ベクトルの定義と求め方, 及び対角行列についてテキストを用いて調べ, 理解できなかった事項をノートに記しておくこと.
【授業後】行列の対角化の意味や目的を確認し, 授業中に解いた問題を解き直すことで知識の定着に努めること.
【第7回小テスト】
|
評価の方法と基準
- 7回の小テストによる. ※ 指定の問題集の中から出題します.
教科書・参考文献について
- 南部徳盛 著, 現代数学ゼミナール9 『数学概論 微分積分と線形代数 』, 近代科学社
ISBN:978-4-7649-1011-9
- 衛藤和文・佐藤弘康・柳下稔・高岡邦行・堀内淳・内藤貴仁 著, 『大学数学これだけは ―精選1000問 』 第2版, 『同・解答集 』第2版, 学術図書出版
ISBN:978-4-7806-0682-9, 978-4-7806-0683-6
科目の位置づけ(学習・教育目標との対応)
この科目は, 「基礎数学II」の後続科目であり, 「基礎数学II」を受講した学生は「基礎数学II」の単位を習得していることが履修条件となる. 微分積分学の基礎として, 「基礎数学II」では1変数関数の微分法, 積分法を扱っている. また, 線形代数学の基礎として, 「基礎数学I」ではベクトルを扱っている. この科目では上記2科目の内容を踏まえ, 微分積分学における2変数関数を主な対象とした微分法, 積分法と, 線形代数学における行列式と固有値, そしてそれらの応用として行列の対角化について学習する.
この必修科目を履修することにより, 工学部生として最低限必要な数学の知識を習得することができる. なお, 本科目の履修者は, 本科目に合格しないと後続科目の「応用解析」を履修することができない.
履修登録前の準備
「基礎数学I」, 「基礎数学II」の内容を十分に理解していることが望ましい.
授業時間外課題に挙げたキーワードについてテキスト及び指定の問題集で予習を行うこと.