線形代数2	中間試験	(2009.6.10)) 学籍番号
		(2003.0.10)) 于相田勺

注意 (1) 解を導きだす過程をできるだけ丁寧に記述すること。 <u>説明が不十分</u> な解答, <u>字の粗暴</u> な解答は 減点 の対象とする.

- (3) 途中退席 は認めない. 試験終了時間まで十分見直しをすること.

点

1 次の各問に答えよ.

$$(1)$$
 行列 $A = \begin{pmatrix} 2 & -2 & 1 & 1 \\ 0 & 2 & 1 & -1 \\ 1 & 0 & 1 & 0 \\ -3 & 2 & -2 & -1 \end{pmatrix}$ から定まる線形変換 $T_A: \mathbf{R}^4 \to \mathbf{R}^4$ に対し、その核 $\operatorname{Ker}(T_A)$ に含

まれるベクトルを次の(ア)~(エ)の中からすべて選びなさい

$$(\mathcal{P}) \begin{pmatrix} 1\\2\\0\\2 \end{pmatrix} \qquad (\mathcal{A}) \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix} \qquad (\dot{\mathcal{D}}) \begin{pmatrix} -2\\-1\\2\\0 \end{pmatrix} \qquad (\mathfrak{I}) \begin{pmatrix} 0\\-1\\2\\-2 \end{pmatrix}$$

(1)

$$(2)$$
 $v=\begin{pmatrix}1\\-1\\2\end{pmatrix}$ とする. 3 次元数ベクトル空間 ${f R}^3$ 上の標準内積に関して, v と直交するベクトルを次の

(ア)~(エ)の中からすべて選びなさい.

$$(\mathcal{P}) \left(\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right) \quad (\mathcal{A}) \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) \quad (\dot{\mathcal{D}}) \left(\begin{array}{c} -2 \\ 2 \\ 2 \end{array} \right) \quad (\mathbf{I}) \left(\begin{array}{c} 0 \\ -2 \\ -1 \end{array} \right)$$

(2)

(3) 次の(ア)~(エ)の中から直交行列をすべて選びなさい.

$$(\mathcal{P}) \, \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \quad (\mathcal{A}) \, \left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array} \right) \quad (\dot{\mathcal{P}}) \, \left(\begin{array}{cc} \sqrt{3}/2 & -\sqrt{3}/2 \\ 1/2 & 1/2 \end{array} \right) \quad (\mathbf{I}) \, \left(\begin{array}{cc} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{array} \right)$$

(3)

 $egin{aligned} oxed{2} & A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ とする。 $oxed{\mathbf{R}}^2$ の基底 $oldsymbol{a}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $oldsymbol{a}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ に関する線形変換 $T_A: \mathbf{R}^2 \to \mathbf{R}^2$ の表現行列 B を求めなさい。

2

2 枚目へ続く (担当:佐藤)

分元な光	-	[0 + /- 🗆]	(0000 0 10	\ <u>}</u>
線形代数 2	中間試験	[2 枚目]	(2009.6.10)) 学籍番号

		氏名

③ 3 次元数ベクトル空間
$$\mathbf{R}^3$$
 の基底 $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ に対して、グラム・シュ

ミットの直交化法を適用し、 \mathbf{R}^3 の標準内積に関する正規直交基底を作りなさい。

3			

裏へ続く (担当:佐藤)

(イ)	任意の $v, w \in V$ に対 V の任意の直交系 $\{v$ 任意の $v \in V$ に対し,	$\{i\}_{i=1,,k}$ は線形独	は立である.		らば, T は直	[交変換であ	る.
選択し	た命題:						
(証	明)						
	れまでの線形代数 2 の : 1 つ挙げ,それを選 <i>A</i>			持ったり印象に	残ったこと((概念,定理	,方法

4 内積空間に関する次の3つの命題(ア)(イ)(ウ)の中から1つの命題を選び、それを証明しなさい。