固有値と固有ベクトル

n 次正方行列 A に対し,

$$A\vec{p} = \lambda \vec{p}$$

を満たす数 λ を A の固有値, \vec{p} (\neq $\vec{0}$) を固有値 λ に対応する A の固有ベクトルとよぶ.

- 固有ベクトルは連立方程式 $(\lambda E_n A)\vec{x} = \vec{0}$ の $\vec{0}$ でない解 (非自明解) である.
- 固有値は $\det(\lambda E_n A) = 0$ を満たす数である.

・固有値、固有ベクトルの求め方 -

- (1) 固有多項式 $f_A(t) = \det(tE_n A)$ を計算する.
- (2) $f_A(t) = 0$ の解 $t = \lambda$ を求める(この解 λ が A の固有値 である).
- (3) (2) で求めた各 λ に対し、連立方程式 $(\lambda E_n A)\vec{x} = \vec{0}$ の非自明解 $\vec{x} = \vec{p}$ を求める(この解 \vec{p} が A の固有値 λ に対応する固有ベクトル である).

| 例題|| 行列の
$$A=\left(egin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 0 \\ 1 & 2 & 0 \end{array}
ight)$$
 に対して,以下の問に答えなさい.

- (1) 固有多項式 $f_A(t) = \det(t E_3 A)$ を求めなさい.
- (2) 3次方程式 $f_A(t) = 0$ の解 λ を求めなさい.
- (3) (2) で求めた各 λ に対し、連立方程式 $(\lambda E_3 A)\vec{x} = \vec{0}$ の非自明解 \vec{p}_{λ} を求めなさい.
- (4) (2) で求めた各 λ に対し、 $A\vec{p_{\lambda}}=\lambda\vec{p_{\lambda}}$ が成り立つことを確かめなさい。

問題 行列 $\begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ の固有値と固有ベクトルを求めなさい.