数学科教育法 解答

1

- (1) 任意の $x \in X$ に対し、 $x \le a$ が成り立つ($\forall x \in X, x \le a$). (補足:上界は集合ではない)
- (2) a は X の元で $(a \in X)$, かつ任意の $x \in X$ に対し, $x \le a$ が成り立つ $(\forall x \in X, x \le a)$.
- (3) X の上界全体のなす集合の最小数のこと。 $\min\{a \mid \forall x \in X, x \leq a\}$.

|2|

X	最大数	最小数	上限	下 限	上に有界か	下に有界か
$\{x \mid x \in \mathbb{R}, x^2 < 3\}$	存在しない	存在しない	$\sqrt{3}$	$-\sqrt{3}$	0	0
$\{x \mid x \in \mathbb{R}, \ x^2 \le 3\}$	$\sqrt{3}$	$-\sqrt{3}$	$\sqrt{3}$	$-\sqrt{3}$	0	0
$\{x \mid x \in \mathbb{Q}, x^2 \le 3\}$	存在しない	存在しない	$\sqrt{3}$	$-\sqrt{3}$	0	0
$\{x \mid x \in \mathbb{Z}, \ x < 3\}$	2	存在しない	2	存在しない	0	×
$\{x \mid x \in \mathbb{N}, \ x < 3\}$	2	1	2	1	0	0
$\{x \mid x \in \mathbb{R}, \ x^2 \ge 3\}$	存在しない	存在しない	存在しない	存在しない	×	×

(補足)

- $\{x \mid x \in \mathbb{R}, x^2 < 3\} = \{x \mid x \in \mathbb{R}, -\sqrt{3} < x < \sqrt{3}\}$ である。つまり、開区間 $(-\sqrt{3}, \sqrt{3})$.
- $\{x \mid x \in \mathbb{R}, x^2 \le 3\} = \{x \mid x \in \mathbb{R}, -\sqrt{3} \le x \le \sqrt{3}\}$ である。つまり、閉区間 $[-\sqrt{3}, \sqrt{3}]$.
- X の最大数 a が存在するのなら、a は X の上限である(最小数、下限についても同様).
- $\{x \mid x \in \mathbb{Z}, x < 3\} = \{2, 1, 0, -1, -2, -3, \ldots\}$. $\{x \mid x \in \mathbb{N}, x < 3\} = \{1, 2\}$.
- $\{x \mid x \in \mathbb{R}, \ x^2 \ge 3\} = \{x \mid x \in \mathbb{R}, \ x \le -\sqrt{3}\} \cup \{x \mid x \in \mathbb{R}, \ \sqrt{3} \le x\} = (-\infty, -\sqrt{3}] \cup [\sqrt{3}, +\infty).$

3

- (1) 「数学科教育法(牧野書店)」p.23 を参照せよ.
- (2) 「数学科教育法(牧野書店)」p.25 の「(1) 自然数の加法」を参照せよ.
- (3) 「数学科教育法(牧野書店)」p.27 の「(2) 自然数の乗法」を参照せよ.

(4)

$$3 \times 3 = 3 \times 2'$$
 (3 = 2')
 $= 3 \times 2 + 3$ (乗法の定義: $n \times m' = n \times m + n$)
 $= 6 + 3$ (「 $3 \times 2 = 6$ 」の詳細は課題 $7 - 2$ (2)の解答を参照せよ)
 $= 6 + 2'$ (3 = 2')
 $= (6 + 2)'$ (加法の定義: $n + m' = (n + m)'$)
 $= (6 + 1')'$ (2 = 1')
 $= ((6 + 1)')'$ (加法の定義: $n + m' = (n + m)'$)
 $= ((6')')'$ (加法の定義: $n + 1 = n'$)
 $= (7')'$ (7 = 6')
 $= 8'$ (8 = 7')
 $= 9$ (9 = 8')

数学科教育法 解答

4 (注意と補足):定義では $x_1, y_1 \ge 0$ としたが, a_n を定義する上では $y_1 > 0$ とすべきである. $(x_1) - 2(y_1) = 1$ という条件から, x_1, y_1 のいずれか(実際には x_1)は 0 でないから, x_n, y_n の定め方よりある n 以降では x_n および y_n はともに 0 でない.したがって, $x_1, y_1 > 0$ となりように初期値を定めることができる.

(1) 任意の $n \in \mathbb{N}$ に対し、 $x_n, y_n \ge 0$ であるから、

$$x_{n+1} = x_n + 2y_n \ge x_n, \qquad y_{n+1} = x_n + y_n \ge y_n.$$

したがって、いずれも単調増加である.

(2)

$$(x_n)^2 - 2(y_n)^2 = (x_{n-1} + 2y_{n-1})^2 - 2(x_{n-1} + y_{n-1})^2$$

$$= -\left\{ (x_{n-1})^2 - 2(y_{n-1})^2 \right\}$$

$$= (-1)^2 \left\{ (x_{n-2})^2 - 2(y_{n-2})^2 \right\}$$

$$= (-1)^3 \left\{ (x_{n-3})^2 - 2(y_{n-3})^2 \right\}$$

$$\vdots$$

$$= (-1)^{n-1} \left\{ (x_1)^2 - 2(y_1)^2 \right\}$$

$$= (-1)^{n-1}.$$

したがって、 n が偶数のときは $(x_n)^2 - 2(y_n)^2 = -1$ 、 n が奇数のときは $(x_n)^2 - 2(y_n)^2 = 1$ である.

$$(a_n)^2 = 2 \pm \frac{1}{(y_n)^2} \le 2 + \frac{1}{(y_n)^2} \le 2 + \frac{1}{(y_n)^2}$$

であるから、 $\{a_n\}$ は上にも下にも有界である。例えば、 $\sqrt{2+1/(y_1)^2}$ は $\{a_n\}$ の上界である。

(4) 定義から $a_n>0$. したがって、下に有界であることは明らかである。たとえば、0 は $\{a_n\}$ の下界である。

(5)

$$b_{m+1} - b_m = a_{2m+1} - a_{2m-1} = \frac{x_{2m+1}}{y_{2m+1}} - \frac{x_{2m-1}}{y_{2m-1}}$$

$$= \frac{x_{2m+1}y_{2m-1} - x_{2m-1}y_{2m+1}}{y_{2m+1}y_{2m-1}}$$

$$= \frac{(x_{2m} + 2y_{2m})y_{2m-1} - x_{2m-1}(x_{2m} + y_{2m})}{y_{2m+1}y_{2m-1}}$$

$$= \frac{(x_{2m-1} + 2y_{2m-1} + 2(x_{2m-1} + y_{2m-1}))y_{2m-1} - x_{2m-1}(x_{2m-1} + 2y_{2m-1} + x_{2m-1} + y_{2m-1})}{y_{2m+1}y_{2m-1}}$$

$$= \frac{(3x_{2m-1} + 4y_{2m-1})y_{2m-1} - x_{2m-1}(2x_{2m-1} + 3y_{2m-1})}{y_{2m+1}y_{2m-1}}$$

$$= \frac{4(y_{2m-1})^2 - 2(x_{2m-1})^2}{y_{2m+1}y_{2m-1}}$$

$$= -2 \cdot \frac{1}{y_{2m+1}y_{2m-1}} < 0.$$

したがって、任意のmに対して、 $b_{m+1} < b_m$ が成り立つので、数列 $\{b_m\}$ は単調減少列である。

(補足) (4)(5) の結果から、数列 $\{b_m\}$ は下に有界な単調減少列であるから、収束することがわかる.