数学科教育法 前期末試験 学籍番号	
注意事項 (1) 試験時間は <u>90 分</u> とする.	
(2) 解答が終わった者は、 <u>試験開始後1時間以降</u> であれば途中退席して構わない。 (3) これまで提出したレポート (に自筆で加筆したもの), 自筆のノート (およびルーズリー	
フ),指定した教科書(および,この授業の内容に触発されて読んだ本)を参照してもよい. それ以外の資料は参照してはならない(答案提出時に参照した資料を確認します).	

- $oxed{1}$ X を実数全体の集合 $\mathbb R$ の部分集合とする。このとき、次の問に答えなさい。
 - (1) $a \in \mathbb{R}$ が X の上界であるとはどういうことか。a が満たすべき必要十分条件を述べなさい。
 - (2) $a \in \mathbb{R}$ が X の最大数であるとはどういうことか。a が満たすべき必要十分を述べなさい。
 - (3) X の上限とは何か説明しなさい.

② 次の実数の部分集合 X に対して、X の最大数、最小数、上限、下限を求め、下の表に記入しなさい(存在しない場合は「存在しない」と書くこと)。また、有界性についても調べ、有界ならば「〇」を、有界でないならば「 \times 」を記入しなさい。ただし、 $\mathbb Q$ は有理数全体の集合、 $\mathbb Z$ は整数全体の集合、 $\mathbb N=\{1,2,3,\ldots\}$ は自然数全体の集合とする。

X	最大数	最小数	上限	下 限	上に有界か	下に有界か
$\{x \mid x \in \mathbb{R}, x^2 < 3\}$						
0						
$\{x \mid x \in \mathbb{R}, \ x^2 \le 3\}$						
$\{x \mid x \in \mathbb{Q}, \ x^2 \le 3\}$						
$\{x \mid x \in \mathbb{Z}, \ x < 3\}$						
$\{x \mid x \in \mathbb{N}, x < 3\}$						
$\{x \mid x \in \mathbb{R}, \ x^2 \ge 3\}$						

- 3 ペアノの公理について以下の問に答えなさい.
 - (1) 自然数の集合は「ある5つの条件」を満たす集合として定義される。その5つの条件を書きなさい。
 - (2) ペアノの公理では「自然数の和」をどのように定義するか述べなさい.
 - (3) ペアノの公理では「自然数の積」をどのように定義するか述べなさい.
 - (4) (3) で述べた定義に従って「 3×3 」を計算しなさい (なお、式変形の過程で (1)(2)(3) のどの条件を使ったか 詳細に明記すること).

$$\begin{cases} x_{n+1} = x_n + 2y_n \\ y_{n+1} = x_n + y_n \end{cases} (x_1)^2 - 2(y_1)^2 = 1, \quad x_1, y_1 \ge 0$$

によって定義する. さらに $a_n = \frac{x_n}{y_n}$ とおく. このとき,以下の問に答えなさい.

- (1) 数列 $\{x_n\}$, $\{y_n\}$ はそれぞれ単調増加か、単調減少か、またはそのいずれでもないか答えなさい(その理由も述べなさい)。 なお、 $x_n,y_n\geq 0$ である事実は証明することなく使ってよい。
- $(2) (x_n)^2 2(y_n)^2$ の値を求めなさい.
- (3) 数列 $\{a_n\}$ は上に有界である。その上界を一つ挙げなさい。また、それが上界である根拠を説明しなさい。
- $\{a_n\}$ は下に有界である。その下界を一つ挙げなさい。また、それが下界である根拠を説明しなさい。
- (5) 数列 $\{a_n\}$ の奇数番目だけを取り出した部分列を $\{b_m\}$ とする (つまり, $b_m=a_{2m-1}$). このとき, 数列 $\{b_m\}$ は単調減少であることを示しなさい.

と (概	[念,定理,事	写実など)や,さ	らに深く学んでみた)中で最も興味深かっ いうところに興味を持	
かなと	、それを争り	ずた理由を具体的	に述べなさい.			
6 の「数			あるか」ということ 変わった場合,どの <i>。</i>		半期の授業を経て,	自身