MN / / USA	線形代数	「クラーメルの公式」	学籍番
--------------	------	------------	-----

			T 4
			I H-24
			DO-D

1 次の連立方程式の解を求めなさい.

$$\begin{cases} 2x + 3y - z = -3\\ -x + 2y + 2z = 1\\ x + y - z = -2 \end{cases}$$

2 連立方程式

$$\left\{ \begin{array}{l} 2x + 3y - z = -3 \\ -x + 2y + 2z = 1 \\ x + y - z = -2 \end{array} \right.$$

について以下の問に答えなさい.

- (1) 上の連立方程式を $A\vec{x}=\vec{b}$ と行列 (ベクトル) 表示するときの,係数行列 A と定数項ベクトル \vec{b} を書きなさい.
- (2) 行列 A の行列式 $\det(A)$ を求めなさい.
- (3) 行列 A の第 i 列の列ベクトルを \vec{a}_i とおく、つまり、 $A=(\vec{a}_1\ \vec{a}_2\ \vec{a}_3)$ 、このとき、行列 A の第 1 列を \vec{b} に置き換えた行列 $(\vec{b}\ \vec{a}_2\ \vec{a}_3)$ の行列式を求めなさい。
- (4) 行列 $(\vec{a}_1 \ \vec{b} \ \vec{a}_3)$ の行列式を求めなさい.
- (5) 行列 $(\vec{a}_1 \ \vec{a}_2 \ \vec{b})$ の行列式を求めなさい.
- $(6) \ \alpha = \frac{\det(\vec{b} \ \vec{a}_2 \ \vec{a}_3)}{\det(A)}, \beta = \frac{\det(\vec{a}_1 \ \vec{b} \ \vec{a}_3)}{\det(A)}, \gamma = \frac{\det(\vec{a}_1 \ \vec{a}_2 \ \vec{b})}{\det(A)}$ を求めなさい.